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ABSTRACT  

In this lecture we present the principles of adaptive beamforming, the problem of estimating the adaptive 
weights and several associated practical problems, like preserving low sidelobe patterns, using subarrays 
and GSLC configurations. We explain the detection problem with adaptive arrays and the methods for 
angle estimation. Finally the methods for resolution enhancement (super-resolution methods) are 
presented. 

1.0 INTRODUCTION – WHY DO WE NEED ADAPTIVE BEAMFORMING 

By adaptive beamforming we mean a data dependent modification of the antenna pattern. We are talking 
here about two types of data: the training data from which we calculate the adaptive weightings and the 
primary data with which detection and parameter estimation (angle, range, Doppler estimation) is 
performed. In this section we consider spatial pattern forming only. However, our description is more 
general to allow the extension to space-time adaptive processing to be developed in the following lectures. 

First, one may ask if adaptive beamforming against spatial interference sources is necessary at all, if we 
can create an antenna with very low sidelobes. A low sidelobe antenna is a fixed spatial filter that does not 
need training and hence has no adaptation problems. However, the overall reduction of the sidelobes 
implies an increase of the antenna beamwidth. This effect is not present if single nulls in the directions of 
the interference are formed. Often the detection and estimation of a target in the vicinity of the 
interference is of interest (from a jamming point of view co-locating the jammer and the target to be 
protected is most efficient). Therefore the increased beamwidth would be counter-productive. Figure 1 
shows the significant loss of radar visibility with a -40 dB low sidelobe antenna (the 902 element generic 
array of Lecture 1 with –40 dB Taylor weighting was chosen). Not only is the sidelobe level insufficient to 
suppress the jamming power, but the broad main beam also makes the antenna blind in the whole sectors 
with closely spaced jammers. The remarkable property of adaptive antennas is that they can suppress 
jammers on the skirt of the main beam such that the radar can look through between two neighbouring 
jammers.  

Adaptive antennas can only suppress interference that was measured in the training data. To be protected 
against surprise interference or insufficiently measured interference a compromise solution using a 
moderate low sidelobe antenna with simultaneous adaptive beamforming is often sought. 
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Figure 1: Range reduction with 10 jammers: Low sidelobe antenna vs. ABF 
Antenna with 902 elements and –40dB Taylor weighting, ABF with 32 subarrays. 

2.0 OPTIMUM ADAPTIVE BEAMFORMING 

Suppose we know the interference situation, i.e. if we know the interference covariance matrix Q, what is 
the optimum beamforming vector w? From the Likelihood Ratio test criterion we know that the 
probability of detection is maximised if we choose the weight vector that maximises the signal-to-noise-
plus-interference ratio (SNIR) for a given (expected) signal a0,  

 { }2 2 2

0 0max E max ( )H H H H=
w w

w a w n w a w Q w . (1) 

The solution of this optimisation is  

 { }1
0 with E Hµ −= =w Q a Q nn . (2) 

µ is a free normalisation constant.  

Sometimes only the jamming power is minimised under additional constraints, e.g. wHci= ki, for suitable 
vectors ci and numbers ki, i= 1..r. Although this is an intuitively reasonable criterion it does not necessarily 
give the maximum SNIR and hence maximum probability of detection. For certain constraints both 
solutions are however equivalent. The constrained optimisation problem can be written in general terms as  

 ( )min   s.t.  , 1..H H H
i ik i r= = =w w Qw w C k w c  (3) 

and the solution can be written as  

 ( )1 11

1

1r

i
H

i
i

λ
=

−− −−= =∑w Q c Q C C Q C k . (4) 

Special cases: 

1. Single unit gain constraint: ( ) 11 1
0 0 0 01H H −− −= ⇒ =w a w a Q a Q a . This is obviously equivalent 

to the SNIR-optimum solution (2). 
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2. Gain and derivative constraint: 1 1
0 0 0 01, 0H H µ κ− −′ ′= = ⇒ = +w a w a w Q a Q a . A derivative 

constraint is added to make the weight less sensitive against mismatch of the steering direction. 

3. Gain and norm constraint: 1
0 01, ( )H H c µ δ −= = ⇒ = +w a w w w Q I a . The norm constraint is 

added to make the weight numerically stable. This is equivalent to the famous diagonal loading 
technique which we will consider later. 

4. Norm constraint only: 1 min ( )H EV= ⇒ =w w w Q . Without a gain constraint the weight 
vector produces a nearly omni-directional pattern, but with nulls in the interference directions. 
This is also called the power inversion weight, because the pattern displays the inverted 
interference power. 

As we mentioned before, the fulfilment of the constraints may imply a significant loss in SNIR. Therefore 
one sometimes aims at a compromise between power minimisation and the constraints which can be 
introduced by coupling factors bi. This is called the soft constraint optimisation 

 
2

1
min rH H

i i ii
b k

=
+ −∑w w Qw w c  or  min ( ) ( )H H H H+ − −w w Qw w C k B w C k  (5) 

with B= diag{b1,..br}. The solution of the soft-constraint optimisation is  

 1( )H −= +w Q CBC CBk . (6) 

Typical special cases are: 

1. Single unit gain constraint: ( ) 1

0 0 0 01H Hbµ
−

= ⇒ = +w a w Q a a a . This corresponds to an 

inclusion of the desired signal into the interference covariance matrix. As we will show later this 
inclusion has no effect on the SNIR. 

2. Gain and derivative constraint: 1
0 0 1 0 0 2 0 0 01, 0 ( )H H H Hb bµ −′ ′ ′= = ⇒ = + +w a w a w Q a a a a a . 

The performance of ABF is often displayed by the adapted antenna pattern. A typical adapted antenna 
pattern with 3 jammers of 20 dB SNR is shown in Figure 2(a). This pattern does however not show how 
the actual jamming power and the null depth play together. Plots of the SNIR are better suited for 
displaying this effect. The SNIR is typically plotted for varying target directions while the interference 
scenario is held fixed, as seen in Figure 2(b). The SNIR is normalised to the SNR in absence of any 
jamming and without ABF. In other words, this pattern shows the insertion loss arising from the jamming 
scenario with applied ABF. The effect of target and steering direction mismatch is not accounted for in the 
SNIR plot. This effect is displayed by the scan pattern, i.e. the pattern arising if the adapted array scans 
over a fixed target and interference scenario. Such a plot is rarely shown because of the many parameters 
to be varied. 

Figure 2 shows the case of an untapered planar antenna. The first sidelobes of the unadapted antenna 
pattern are at –17 dB and are nearly unaffected by the adaptation process. If we have an antenna with low 
sidelobes, the peak sidelobe level is much more affected. This is seen in Figure 3. Due to the tapering we 
have a loss in SNIR of 1.7 dB compared to the reference antenna (untapered without ABF and jamming). 
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(a) Adapted antenna pattern 
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(b) SNIR 
Figure 2: Antenna and normalised SNIR patterns for a three jammer configuration. 
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(a) Adapted antenna pattern 
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(b) SNIR 

Figure 3: Antenna and normalised SNIR patterns for a three jammer configuration  
for antenna with low sidelobes (-40 dB Taylor weighting). 
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(a) untapered antenna 
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(b) –40 dB Taylor weighting 

Figure 4: Antenna patterns for mainbeam jamming configuration. 
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The low-sidelobe antenna is also much more sensitive against mainbeam jamming. This is mainly due to 
the broader mainbeam width. In summary, if we want to look through between closely spaced jammers i.e. 
if mainbeam jamming is an issue, the low-sidelobe tapering is counter-productive. Low sidelobes are only 
appropriate against completely unknown extended interference. Any a-priori knowledge on the extent and 
direction of the interference should otherwise be better countered by some deterministic pattern shaping as 
presented in Lecture 1. 

3.0 ESTIMATION OF ADAPTIVE WEIGHTS 
In reality the interference covariance matrix is not known and must be estimated from some training data 

( )1, K=Z z z . The maximum likelihood estimate of the covariance matrix is  

 1

1

ˆ
K

H
SMI k kK

k =

= ∑Q z z . (7) 

This is called the Sample Matrix Inversion algorithm (SMI). The SMI method is only asymptotically a 
good estimate. For small sample size it is known to be not very stable. For the matrix being invertible we 
need at least K= N samples. According to Brennan’s Rule, [1], one needs 2K samples to obtain on the 
average a SNIR loss below 3 dB. For smaller sample size the performance can be considerably worse. 
However, by simply adding a multiple of the identity matrix to the estimated covariance matrix a nearly 
optimum performance can be achieved. This is called the loaded sample matrix estimate (LSMI).  

 1

1

ˆ
K

H
LSMI k kK

k
δ

=

= + ⋅∑Q z z I  (8) 

The difference between SMI and LSMI is drastically shown in Figure 5. For a “reasonable” choice of the 
loading factor (a rule of thumb is δ = 2σ ² .. 4σ ² for an untapered antenna) we need only 2M snapshots to 
obtain an average SNIR loss below 3 dB, if M denotes the number of jammers (dominant eigenvalues) 
present, [3]. So the sample size can be considerably below the dimension of the matrix. The effect of the 
loading factor is that the dynamic range of the small eigenvalues is compressed. The small eigenvalues 
possess the largest statistical fluctuation, but have the greatest influence on the weight fluctuation after 
inversion of the matrix. 

One may go even further and ignore the small eigenvalue estimates completely, i.e. one tries to find an 
estimate of the inverse covariance matrix based on the dominant eigenvectors and eigenvalues. For high 
SNR we can replace the inverse covariance matrix by a projection matrix. Suppose we have M jammers 
with amplitudes b1(t),.., bM(t) in directions u1,…, uM. The received data can then be written as 

1
( ) ( ) ( ) ( )

M

k m m k k
m

t b t t
=

= +∑z a u n , or short in vector-matrix notation ( ) ( ) ( )k k kt t t= +z Ab n . Then it is easy to 

show that  
 H= +Q ABA I , (9) 

where we have normalised the noise power to 1 and { }E H=B bb . Using the matrix inversion lemma we 

have now for the inverse that 

 1 1 1 1( ) ( )H H H H− − − − ⊥
→∞= − + → − = ABQ I A B A A A I A A A A P . (10) 

⊥
AP  is a projection on the space orthogonal to the columns of A. For strong jammers we may therefore 

replace the estimated inverse covariance matrix by a projection built from the dominant eigenvectors of 
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the estimated covariance matrix, called EVP method. As the eigenvectors X are usually orthonormalised 
the projection can be written as H

X
⊥ = −P I XX . 

Figure 5 shows the performance of SMI, LSMI and EVP for a 32 channel array and 32 data snapshots (the 
generic planar array of Lecture 1) and three jammers of 20 dB input JNR. Note the drastic improvement 
by LSMI and EVP and the little difference between LSMI and EVP. The three methods are based on the 
same realisation of covariance estimate. What is not visible in this figure is the sidelobe level. EVP can 
better preserve a desired low sidelobe level than LSMI. 
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Figure 5: SNIR for SMI, LSMI (δ= 4σ 2) and eigenvector projection (dim(Jammer subspace)=3). 

For EVP we have to know the dimension of the jammer subspace (dimJSS). In complicated scenarios and 
with channels errors this can be difficult to determine. If dimJSS is grossly overestimated a loss in SNIR 
occurs, if dimJSS is underestimated the jammers are not fully suppressed. One is therefore interested in 
subspace methods with less sensitivity against the choice of subspace dimension. This property is 
achieved by a “weighted projection”, i.e. by replacing the projection by a matrix 

 H
LMI = −P I XDX , (11) 

where X is a set of orthonormal vectors spanning the interference subspace and D is a diagonal weighting 
matrix. PLMI is of course no projection. This type of methods are called lean matrix inversion methods 
(LMI). 

Different kinds of adaptive weight estimation methods have been proposed which can all be interpreted as 
an LMI method (e.g. constrained signal subspace method, CSSP, constrained noise subspace method 
CNSP, [2]). The LMI matrix can also be economically calculated by an eigenvector-free QR-
decomposition method, [3]. 

One of the most efficient methods for pattern stabilisation while maintaining a low desired sidelobe level 
is the constrained adaptive pattern synthesis (CAPS) algorithm, [4]. Suppose we have a weight vector for 
beamforming with low sidelobes in a certain direction, m. In full generality the CAPS weight can be 
written as 

 ( ) ( )1 1

11 11 1
ˆ ˆ

ˆ ˆ
H H

HH
CAPS − −

−− −
⊥ ⊥⊥ ⊥= − −

m R m m R m
w R m X X C R m mX CX , (12) 
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where the columns of the matrix X⊥ span the space orthogonal to [ ],X m  and X is again a unitary L×M 
matrix with columns spanning the interference subspace which is assumed to be of dimension M. C is a 
directional weighting matrix, ( ) ( ) ( )H p d

Ω

= ∫C a u a u u u , if Ω denotes the set of directions of interest and 

p(u) a directional weighting function. If we use no directional weighting, C≈I , the CAPS weight vector 
simplifies to  

 [ ] ( )1
11

ˆ,
ˆ

HCAPS −
−= + −X m m R m

w m P R m m , (1.13) 

where [ ],X mP  denotes the projection onto the space spanned by the columns of X and m. Only for very low 
sidelobe antennas (e.g. –40 dB) and severe jamming situations (e.g. mainbeam jamming) a difference to 
LSMI and LMI is visible, see Figure 6(a) for the scenario of Figure 1. The loading factor was set to δ= 
4σ 2 . 

. −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0

u

dB

20
20

20
20

20
20

20
20

CAPS/4/32
LSMI/4/32

(a) Adapted patterns with LSMI and CAPS 
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Figure 6: LSMI and CAPS for scenario with 10 jammers, generic array with 32 subarrays, K=32. 

All subspace methods require an estimate of the dimension of the interference subspace (dimJSS). Usually 
this is derived from the eigenvectors. For complicated scenarios and small sample size a clear decision 
what constitutes a dominant eigenvalue may be difficult. Figure 6(b) shows the eigenvalues for the 10 
jammer scenario estimated from 32 data snapshots (the loading factor level for LSMI is indicated by the 
green dashed line). However, this is a simple scenario with equally strong jammers and without channel 
errors. Several criteria to determine dimJSS have been suggested: the Akaike Information Criterion (AIC), 
Minimum Description Length (MDL), and threshold tests, see e.g. [5]. The AIC and MDL are based on 
the test criterion  

 

1

1
1/( )

1

( )

N

iN m
i m

N mN

i
i m

T m
λ

λ

−
= +

−

= +

=
 
 
 

∑

∏
, (14) 

where λi denote the eigenvalues of the estimated covariance matrix ordered in decreasing magnitude. For 
AIC resp. MDL one chooses dimJSS as the argument M̂  where the following functions are minimum  
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( ) ( ) log[ ( )] (2 )
( ) ( ) log[ ( )] ( / 2)(2 ) log

AIC m K N m T m m N m
MDL m K N m T m m N m K

= − + −
= − + −

, (15) 

The typical threshold test for known noise power σ ² uses the statistic L(m) based on the ordered 
eigenvalues 

 2
1

2( )
N

i
i m

KL m λ
σ = +

= ∑  (16) 

and the decision is found if the test statistic is for the first time below the threshold 

   for i=1..N do  
 if 2

2 ( );( ) K N mL m αχ −≤ : M̂ m= ; STOP; (17) 
    end 
The symbol 2

;r αχ  denotes the α-percentage point of the χ ²-distribution with r degrees of freedom. The 
probability to overestimate dimJSS is then asymptotically bounded by α. As explained in [5] diagonal 
loading can improve AIC and MDL for small sample size and make these criteria robust against errors. 

The eigenvector-free weight calculation methods methods use different criteria based on QR-
decomposition, [3]. 

4.0 PROBLEMS OF ADAPTIVE BEAMFORMING 

In the preceding section we have already mentioned some of the problems associated with adaptive arrays. 
We give here a full list of problems and the possible mitigations. 

4.1 Numerical Inversion of the Matrix 

This should be no more a problem with today’s floating point processors. For training data ( )1, K=Z z z  

the estimated covariance matrix 1ˆ H
K=Q ZZ  is positive definite and hermitean. Cholesky-decomposition is 

therefore suitable and numerically stable. For solving the linear equation we can use forward-backward 
recursion for the triangular matrices. For small sample size also QR-decomposition of the data matrix ZH 
is suitable, because for H =Z UR  with U unitary and R upper triangular, 1 1ˆ H H H

K K= =Q R U UR R R . This 
means that up to a normalisation constant the upper triangular matrix R is the same as the Cholesky factor 
of Q̂ . There are also efficient recursive QR algorithms to update a given RK if a new data snapshot zK+1 
comes in, [6]. 

4.2 Low Number of Data Samples 
Diagonal loading and subspace methods are the appropriate means to counter these effects. 

4.3 Weight Fluctuation  
The weight fluctuation is basically a consequence of a too low number of data samples. However, 
depending on the required sidelobe level “too low” may mean different numbers. Diagonal loading and 
subspace methods are the appropriate means to counter these effects. 
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4.4 Preservation of Low Sidelobes 
The first point to note here is that, if the quiescent channels (only receiver noise is present) have unequal 
power, the adaptive processor will try to make the power equal, such that the resulting covariance matrix 
of these channels is the identity matrix. This means that all tapering applied before adaptation will be 
retracted by the adaptive processor. To avoid this we have to normalise all channels, such that the noise 
power is equal. All taper weights have to be accounted for in the desired (or model) signal appearing in the 
constraints (a0 in (2), (4), (6) or m in (12)). This is of particular importance if we work with subarrays, see 
the following section.  

As mentioned before, additional constraints, diagonal loading, subspace methods, and in particular the 
CAPS method are suited to preserve the low sidelobes. 

4.5 Real Time Requirement (reduction of the number of channels) 
Much work has been done on fast weight estimation. However, if we count the number of operations the 
application of the weights to the data, i.e. the digital beamforming operation, gives the largest 
computational load, because we have in general a large number of range cells. Therefore there is an 
interest in reducing the number of channels. In the early days of adaptive antennas one simply added some 
auxiliary elements by which the interference was estimated and then subtracted from the main antenna. 
This is called the sidelobe canceller (SLC), see Figure 7. The main antenna can be even a conventional 
dish antenna.  

Figure 7: Principle of sidelobe canceller. 

The adaptive weights w are determined such that the jamming power estimated with the auxiliary channel 

x is optimally subtracted form the main channel y in a mean square sense: { }2
E min!Hy − =w x . The 

solution of this optimisation is { } { }1 1E EH
slc xx xyy

− −= ⋅ =w xx x Q q . One can show that this solution is equal 

to the SNR-optimising solution of (2) 1
0µ −=w Q a , if we set the beamforming vector 0 (1,0,...0)T=a  and 

partition the covariance matrix into the main and auxiliary channel part xy
H
xy xx

r 
=  

 

q
Q

q Q
. The 

beamforming (signal model) vector shows that this method is SNR-optimum, if the main antenna has a 
high gain such the signal in the auxiliary channel can be neglected. 

For phased arrays forming subarrays is a suitable means of reducing the number of channels. We can 
apply the SNR-optimum weight to the subarray outputs. However, a fully filled array on a regular grid 

Σ 

w www

w ww ww ww ww w

ADC 

-

Σ 
∆ 

adaptive weighting wΣ 



Principles of Adaptive Array Processing  

5 - 10 RTO-EN-SET-086 

 

 

grouped into equal subarrays will produce grating notches in adaptive beamforming, because the subarray 
centres are separated by more than λ/2. Grating effects can be avoided by choosing subarrays of different 
size and irregular shape as in the generic subarray of Lecture 1, Figure 8. The problem is that now the 
receiver noise powers at each subarray are unequal (assuming that the amplifiers of the TRMs create the 
main noise contribution). The adaptation process will try to whiten the noise which means it will try to 
remove the low sidelobe taper as much as possible on subarray level. This can be avoided by normalising 
to equal noise power as mentioned in Lecture 1. If the whole subarray forming process is described by a 
matrix T (including phase shifting and full tapering, Lecture 1), then the normalisation at the subarray 
outputs should be such that THT=I. If the whole conventional beamforming is then done by w =T 1, where 
1 is the vector of ones (of length equal to no of subarrays), then we decompose T= T0D, such that 

0 0
H =T T I  and use as beamforming vector at the subarray outputs m=D 1. The covariance matrix is 

calculated form the subarray output data as usual, e.g. 

1

1

1ˆ ˆ
K

H H H H
k k K

kK =

= = =∑Q T z z T T ZZ T TQT . 

  
 

(a) Beamforming with subarrays 
 

(b) Generic array with 902 elements 32 
irregular subarrays 

Figure 8: Beamforming with subarrays. 

Subarrays and the SLC concept can be combined to a Generalised Sidelobe Canceller (GSLC) as indicated 
in Figure 9. In this case one can apply a matrix operation M to the subarray outputs. If this matrix is 
orthogonal to the main beam beamforming vector m, i.e. if MHm= 0, the so called signal blocking 
condition is fulfilled, then this GSLC is mathematically identical to the SNR-optimum weight (2). The 
advantage of the GSLC can be that the main channels may be formed in an analogue manner, resulting in 
a reduced sensitivity to AD-converter limiting for strong jammers in the main channel, because the 
jammers are attenuated by the sidelobes, and in a possibly reduced sensitivity to bandwidth errors as the 
analogue beamforming network has a broadband characteristic.  

      Σ 

d d d d d

w w w w w w w w w w w w w 

ADC

T

      Σ 
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      Σ 
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Figure 9: Generalised Sidelobe Canceller configuration. 

4.6 Sensitivity Against Errors 
A big advantage of adaptive beamforming versus deterministic beamforming is that for interference  
cancellation the steering vectors into the interference directions need not to be known. Array element 
position errors therefore have no influence on the interference cancellation (they do have an influence on 
the beam shape into the target direction). The error bounds derived in Lecture 1 Sect. 4.4 on weight errors 
can be applied here, too.  

A key issue in ABF is the equality of the channels. All fixed errors (amplitude, phase) are not relevant for 
the suppression, because the covariance matrix measures only the correlation between the channels. Fixed 
offsets have the effect of an additional jammer. However, random errors which lead to a decorrelation 
have an impact. Typically these are I- and Q-demodulation errors (different amplification, orthogonality 
errors) and differences in the bandpass filter characteristic. These error effects have been analysed in [7]. 
The effect of these errors is a leakage of the dominant eigenvalues into the noise eigenvalues. With more 
degrees of freedom such errors can be partly compensated. Figure 10 shows the eigenvalues for a scenario 
with 3 jammers with the generic array (32 subarrays) with and without bandpass filter errors (1 dB 
amplitude ripple). The apparent number of jammers has been doubled by the errors. 

Figure 10: Eigenvalue leakage due to bandpass filter ripple. 
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4.7 Inclusion of the Signal in the Training Data 
The data for estimating the adaptive filter weights (training data) should not contain the signal, because it 
would be considered as interference and suppressed. Only if the signal present is exactly equal to the 
expected signal (the beamforming vector), then signal inclusion does not have an effect, because for 

0 0
H= +R s s Q  we have 

1 1
1 1 0 0

1
0 01

H

H

− −
− −

−= −
+

Q s s QR Q
s Q s

 such that 
1
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0 0 01

0 01

H

H

−
− − −

−= −
+
s Q aR a Q a Q s

s Q s
. Hence, if 

0 0a s  we have 1 1
0 0

− −Q a R a .  

We have to take care that the training data are taken where no target is expected (dead zones) or we have 
to exclude the cell under test from the training data. If the signal is weak (e.g. if the transmit pulse is a 
long coded pulse) then signal cancellation will have little effect.  

4.8 Non-Stationary Interference 
The general adaptation scheme is consists of the training phase followed by a weight application phase 
with weights frozen as indicated in the figure below. This method is susceptible to any kind of non-
stationarity of the jamming scenario.  

Figure 11: Adaptation by training and weight freezing. 

If the weights are applied in the same time window where the training data have been taken, no time delay 
occurs. We have only introduced some latency of the outputs. Moreover, if the jammer moves in the 
training phase, an extended null will be created and thus a reasonable suppression can be achieved. It is 
also possible to force the creation of extended nulls to account for moving interference. This has been 
done in [8]. Another option against moving interference is to calculate time-varying adaptive weights by a 
linear extrapolation. This has been presented in [9].  

Figure 12: Training and weight application on the same data. 

5.0 ADAPTIVE DETECTION 

In Section 2.0 we have only considered the maximisation of the signal-to-noise ratio, which is equivalent 
to maximising the detection probability for the case of known interference covariance. This can be derived 

Weight application Weight application 

CPI

time 

training

time

data buffering 
Weight 
application data buffering 

training 

Weight 
application data buffering 

training 

training cpi1 cpi2 

Weight 
application 



Principles of Adaptive Array Processing 

RTO-EN-SET-086 5 - 13 

 

 

from the Likelihood ratio test presented in Lecture 1. In reality the interference covariance matrix is 
estimated and the correct maximum-likelihood test must consider both, the secondary (training ) and 
primary (weight application) data sets.  

The likelihood ratio test for the adaptive beamforming problem with primary and secondary data has been 
studied in [10] and is often known as the Generalised Likelihood Ratio Test (GLRT), although this term 
describes a class of test procedures independent of ABF. The resulting test has the structure  

 Decide for  
( ) (no target present)

 if 
( ) (target present)

GLRT

GLRT

T
T

η
η

≤  
   >   

z
z

H
A

 (18) 

with 

 
( )

21
0

1 11
0 0

ˆ
( )

ˆ ˆ1

H

GLRT H H
K

T
−

− −
=

+

a Q z
z

a Q a z Q z
, (19) 

where a0 is the plane wave response (the expected signal), z is the primary data vector, and 
1

1ˆ
K

H
k k

k
K

=

= ∑Q z z  

is the covariance matrix estimated from the secondary data.  

A test based only on the adaptive beam output has also been suggested, called the Adaptive Matched Filter 
(AMF) test, [12], 

 

21
0

1
0 0

ˆ
( ) ˆ

H

AMF H
T

−

−
=

a Q z
z

a Q a
. (20) 

By means of different considerations using subspaces and invariances a detector called Adaptive Cosine 
Estimator (ACE), [13], has been introduced, which is closely related to the detectors mentioned before.  

 

21
0

1 1
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ˆ
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H
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−

− −
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⋅

a Q z
z
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The relation to the generalised cosine, which is defined as ( )cos ,
H

=
⋅

a ba b
a b

, is obvious. The statistics 

are related by  1 11 ˆ ˆ/(1 ) and /H H
GLRT AMF ACE AMFKT T T T− −= + =z Q z z Q z . 

Interpretations of the statistics and consequences: 

1. The AMF detector represents an estimate of the signal-to-noise ratio because 
2

ˆ

H

AMF H
T =

w z

w Q w
. It has 

thus a physically intuitive interpretation.  

2. The AMF detector may be interpreted as a CFAR detector with CFAR threshold averaged over 
secondary (training) beam output data, because TAMF <η is equivalent to 

2 21 1

1 1

K K
H H H H

k k kK K
k k

η η
= =

 
< ⋅ = ⋅  

 
∑ ∑w z w z w z z w . 
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3. The ACE detector can be interpreted as an adaptive sidelobe blanking scheme, because TACE <η is 

equivalent to 
2

0 ( )H H Gη< ⋅ ⋅w z w a z , where 
21 2

,
1

ˆ( ) || ||
N

H H
preWh i

iH preWh

G z−

===

= = = ∑
zLL

z z Q z L z  is an 

adaptive guard channel calculated from the incoherent sum of all pre-whitened channels. The quantity 
0

Hw a  is a normalisation of the weight vector which may be chosen equal to 1 (for a look direction 
constraint weight).  

4. Similarly, the GLRT may be interpreted as an adaptive sidelobe blanking detector with a guard 
channel with constant level added. 

The detection performance of the GLRT has been derived in [11], of the AMF in [12], and for the ACE in 
[13]. A compact derivation of the detection and false alarm probabilities of these detectors is given in [14]. 
These results show that the GLRT has superior performance over AMF and ACE. However, the results are 
only valid for an antenna without tapering. The case of a tapered antenna has been shortly characterised in 
[16] (called the mismatch case there). We give here only the final formulas for the detection and false 
alarm probabilities of these detectors in the general and compact form given in [14], [16] for tapered 
antennas (or look direction mismatch). The derivation of these probabilities is quite challenging. For 
details the reader is referred to these references. The distribution of the statistics is  

 ( )
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0 0
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0 0
1, 1 2, 1

0 0
1, 1 2, 1
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( ) / , with /
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β

δ
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∼

∼

∼

, (22) 

where Fr,s(δ), resp. βr,s(c), denotes a complex non-centrally F-, resp. Beta-, distributed random variable 
with r, s degrees of freedom and non-centrality parameter δβ  , resp. c. The non-centrality parameters are 

 
22 1 2

2, 1 0

22 1 2
0

( ) cos ( , )

sin ( , )

H
K N N

H

S c

c S

βδ β −
− + −

−

= ⋅

= ⋅

m R m a m
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, (23) 

where |S|² denotes the input signal power and 
21

02
0 1 1

0

cos ( , )
H

H H

−

− −=
⋅

a Q m
a m

a Q a m Q m
 and 

2 2
0 0sin ( , ) 1 cos ( , )= −a m a m . For the case of perfect signal match (e.g. untapered antenna) with a0=m we 

have 2
0cos ( , ) 1=a m  and c= 0. The detection probability for a detection threshold η is now calculated by 

integrating these statistics T over their distribution PT, TPD T dP
η

∞
= ⋅∫ . The false alarm probability is 

obtained by inserting the distribution of the null hypothesis, i.e. the case when there is no target (|S|²=0), 
which means using the central distributions. The integrals are evaluated numerically by integrating the F-
distribution for given β over the Beta-density. 

The above formulas are valid for any data snapshot vector and any adaptive beamforming vector. This 
means that these formulas can be generalised to space-time adaptive processing (STAP). 

Figure 13 shows the detection probability for the generic array with and without -35 dB Taylor tapering.  
We have applied a partial weighting at the array elements such that the noise power normalisation (or pre-
whitening) as described in Sect. 4.5 is performed. The final taper weighting is applied at the subarrays. 
The false alarm probability was set to 10-4. Two jammers with 30 dB SNR at the elements at azimuth 
angles u= (-0.8, -0.4) corresponding (-53.1°, –23.5°) are present and adaptively suppressed with snapshot 
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numbers K= 2L and 3L (number of subarrays L=32). The tapering has a significant influence on the 
detection probability. For the generalized cosine we have already cos²(a0,m)=0.85 (solid lines). In addition 
we have plotted PD curves for cos²(a0,m)=0.5, which corresponds to a target at half beamwidth off the 
look direction (dashed lines). In the untapered case the GLRT is best, but the AMF is very close to it 
(dotted lines). The GLRT is therefore considered as a sort of benchmark test. The ACE is very well suited 
to suppress sidelobe detections or any kind of mismatched signals. 
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Figure 13: Detection probabilities for GLRT, AMF and  
ACE with and without tapering (homogeneous case). 

These analytical results are less suited to predict the detection performance of a real system. One would 
rather use them to study scenario and antenna dependencies. The detection probabilities of advanced 
adaptive weights, like subspace based or CAPS method, are too complicated to be determined analytically. 
These have to be evaluated by simulation. In addition, for a real radar other CFAR (constant false alarm 
rate) criteria may be introduced.  

6.0 ANGLE ESTIMATION WITH ADAPTIVE ARRAYS 

For adapted sum and difference beams the monopulse formula derived in Lecture 1 may produce large 
errors because the sum and difference beams can be severely distorted due to the nulls in the interference 
directions. This is in particular the case for jammers on the skirt of the main beam. However, the 
maximum likelihood estimation procedure described in Lecture 1 can be applied for an unknown 
interference covariance matrix, too. In the same way as in Lecture 1 one can derive a monopulse formula. 
This has been described in [17]. However, the ML procedure requires a special difference beam weight, 
which is the derivative of the sum beam weight. If we apply the monopulse formula to the subarray 
outputs, the true derivative cannot be applied. Also, often difference beams with low sidelobes are desired. 
An adaptive monopulse formula for arbitrary sum and difference beams has been derived in [18]. This 
formula has the form  

 0

0

xx xy x x

yx yy y y

c c Ruu
c c Rvv
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−    
= −      −      

, (24) 
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is the monopulse ratio formed with the measured difference and sum beam outputs Dx= H
xd z , S= Hw z , 

respectively, with arbitrary difference and sum beam weightings dx, w (and analogous for elevation 
estimation dy). The bias correction is calculated as 

 0

0
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α

αµ
 

=  
 

d a
w a

, for α= x, y (25) 

and the inverse slope correction matrix ( ), 1
,
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h
a x y
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cα −
=
=

= C  as 
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2
00

Re
2Re

H H H H H
h h hh

a HH
c α αα µ
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d a a w d a a w w a
w aw a

 (26) 

for α= x, y, and h= u, v. a0 is the response of the array to a plane wave in the look direction and ah,0 the 
derivative. In general these are fixed antenna determined quantities.  

This monopulse formula is valid for any data snapshot vector and any adaptive beamforming vectors. In 
particular it can be applied to the subarray outputs or to a GSLC, which is a very special subarray 
configuration. Also the monopulse formula can be generalised to space-time adaptive processing. This has 
been formulated in [19]. Furthermore, the statistical distribution has been calculated in [19] for given 
weight vectors (conditional distributions).  

Figure 14 shows the bias and standard deviation of the monopulse estimates for a jammer at one 
beamwidth off the antenna look direction (the jammer position is indicated by the asterisk). The 3 dB 
contours of the unadapted sum and difference beams are also indicated. Note that the jammer is nearly on 
the maximum of the difference beam which means that the difference pattern will be heavily distorted due 
to the adaptive null. With the performed slope and bias correction a reasonable angle estimate is obtained.  
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(b) stochastic (Rayleigh) targets 

Figure 14: Bias and standard deviation of monopulse estimates with adaptive beamforming  
for deterministic and stochastic targets, one jammer at 1 bw off antenna look direction. 



Principles of Adaptive Array Processing 

RTO-EN-SET-086 5 - 17 

 

 

7.0 SUPERRESOLUTION METHODS 

The resolution limit for classical beamforming is the 3 dB beamwidth of the sum beam. This limit is due 
to a signal processing that assumes only one target. With an array we have given spatial samples of the 
impinging wavefronts and one may assume a multi target model. This opens the possibility for enhanced 
resolution. Methods that yield a resolution beyond the conventional 3 dB beamwidth are called super-
resolution methods. These methods have been discussed since decades, and textbooks on this topic are 
available, e.g. [20]. Of the many methods presented we consider here only those that can be applied to 
planar irregular spatial samples (which means also to irregular subarrays). We list below only some of the 
most important methods. 

Capon’s method   

 ( ) 11ˆ( ) ( ) ( )H
C MLS

−
−=u a u R a u  with 1

1
ˆ K H

ML k kK k =
= ∑R z z  

MUSIC method (Multiple Signal Classification)  

 ( ) 1
( ) ( ) ( )H

MUSICS
−⊥=u a u P a u  with H⊥ = −P I XX , and X spanning the dominant subspace 

Deterministic ML method 

 det
ˆ( ) tr( )MLF ⊥= Aθ P R  with ( ) 1H H−⊥ = −AP I A A A A  and A(θ)= (a(u1),... a(uM)) 

Stochastic ML method  

 ( )( ) ( )( )1 ˆ( ) logdet trsto MLF −= +θ R θ R θ R   

where R(θ) denotes the completely parameterised covariance matrix. One can give a formulation with the 
unknown directions as the only parameters 

 { }2( ) det ( ) ( ) ( ) ( )H
stoF σ= +θ A θ B θ A θ θ I  with  

{ }2 1 ˆ( ) tr MLN Mσ ⊥
−= Aθ P R , ( )1 2 1ˆ( ) ( ) ( ) ( )H H H

ML σ− −= −B θ A A A R θ I A A A  for A=A(θ).  

The deterministic ML method has some intuitive interpretations:  

1. 
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squared residual error after signal extraction is minimised 
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⊥= Aa P a , where we have partitioned the matrix of steering 

vectors into ( ),=A a A . This property is valid due to the projection decomposition lemma which says 



Principles of Adaptive Array Processing  

5 - 18 RTO-EN-SET-086 

 

 

that for any partitioning A= (F,G) we can write 1( )H H⊥ ⊥ ⊥ ⊥ − ⊥= −A G G G GP P P F F P F F P . If we keep the 
directions in A  fixed, this relation says that we have to maximise the scan pattern while the sources in 
the directions of A  are deterministically nulled. One can now perform the multi-dimensional 
maximisation by alternating 1-dimensional maximisations and keeping the remaining directions fixed. 
This is the basis of the alternating projection method or IMP (Incremental Multi-Parameter) method, 
[20], p. 105. 

The performance of the MUSIC method is illustrated in Figure 15 and for the deterministic ML method in 
Figure 16. 

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3
-10

0

10

20

30

40

50

60

70

80

u

1 12 12

dB

 
(a) simulated data 

−0.5

0

0.5

−0.5

0

0.5
0

5

10

15

20

uv

d
B

(b) measured real data 

Figure 15: MUSIC spectra. 

Figure 16: Super-resolution of multipath propagation over sea with deterministic ML method 
(real data from vertical linear array with 32 elements, scenario illustrated above). 

The problems of these methods are described in [21], [22]. Main problems are numerical effort for finding 
the M maxima (one M-dimensional optimisation or M 1-dimensional optimisations). To mitigate this 
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problem a stochastic approximation algorithm or the IMP method has been proposed for the deterministic 
ML method. Another problem is the exact knowledge of the signal model for all possible directions. This 
is sometimes called the array manifold. This is mainly an antenna accuracy or calibration problem. For an 
array with subarrays it is possible to perform super-resolution only with the subarray outputs. If one is 
only interested in super-resolution in the vicinity of the look direction, then one can use a simplified array 
manifold model based on the subarray centres, called the Direct Uniform Manifold model (DUM), which 
requires less calibration effort, [23]. Another problem is the determination of the number of sources. This 
can be achieved by the information theoretic methods presented in (15) or by the threshold test of (17). 
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